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Abstract—Despite the efficacy of fuzzing in verifying the im-
plementation correctness of network protocols, existing IoT
protocol fuzzing approaches grapple with several limitations,
including obfuscated message formats, unresolved message
dependencies, and a lack of evaluations on the testing cases.
These limitations significantly curtail the capabilities of IoT
fuzzers in vulnerability identification. In this work, we show
that the protocol specification contains fruitful descriptions of
protocol messages, which can be used to overcome the above
limitations and guide IoT protocol fuzzing. To automate the
specification analysis, we augment the large language model
with the specification contents, and drive it to perform two
tasks (i.e., protocol information extraction, and device response
reasoning). We further design and implement a fuzzing algo-
rithm, LLMIF, which incorporates the LLM into IoT fuzzing.
Finally, we select Zigbhee as the target protocol and initiate
comprehensive evaluations. The evaluation result shows that
LLMIF successfully addressed the above limitations. Com-
pared with the existing Zigbee fuzzers, it increases the protocol
message coverage and code coverage by 55.2% and 53.9%,
respectively. Besides the enhanced coverage, LLMIF unearthed
11 vulnerabilities on real-world Zigbee devices, which include
eight previously unknown vulnerabilities. Seven of them are
not covered by the existing Zigbee fuzzers.

1. Introduction

Ensuring the correctness of IoT protocol implementa-
tions is important since these protocols guarantee the in-
tended functioning of IoT devices. In critical infrastruc-
tures (e.g., healthcare, transportation, and energy), malfunc-
tions or crashes in IoT devices can lead to catastrophic
consequences [1]. One error in a protocol implementation
can instigate a domino effect of failures, which can be
challenging to diagnose and rectify [2]. In particular, the
network protocol fuzzing technique has been widely used to
identify vulnerabilities in the protocol implementation [3],
[4], [5], [6], [7]. It involves generating tailored messages and
transmitting them to the target device in an attempt to trigger
unexpected behavior. Since the generated message conforms
to the protocol format requirement, network protocol fuzzing
is more flexible compared with binary fuzzing [8], [9]. It can
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easily target different protocol implementations without the
need to consider the availability of the source codes and the
hardware configuration of the target device.

Network protocol fuzzing encompasses several distinct
phases, i.e., fuzzing seed generation, seed mutation, test case
evaluation, and case enrichment. Unfortunately, the design
scope and effectiveness of existing 10T fuzzers [3], [4],
[5], [10] suffer from certain limitations, which restrict their
design scope and effectiveness. (L.1) Obfuscated Message
Formats. 1oT messages typically exhibit a complex structure,
with meticulously constructed headers and payloads. In the
absence of knowledge regarding these message formats, two
significant issues arise. Firstly, the fuzzer is limited to a
relatively small range of message types for seed genera-
tion. Secondly, mutation processes may prove ineffective,
as they often generate malformed test cases or overlook
the mutation of critical bits/bytes, which can potentially
expose vulnerabilities. (L.2) Unresolved Message Depen-
dencies. 10T protocols showcase an extensive device state
space, effectively navigable only through well-orchestrated
message sequences. Without resolving these message depen-
dencies, enriching the testing cases and creating complex
message sequences becomes a daunting task. (L.3) Lack of
Testing Case Evaluations. The evaluation of testing cases
based on execution feedback (e.g., code coverage) is a
standard approach to retain intriguing cases for further ex-
amination [11]. Absent appropriate evaluation strategies, the
fuzzer continually generates low-quality test cases, resulting
in subpar fuzzing performance.

Regrettably, surmounting the aforementioned obstacles
to fuzz IoT devices is not a straightforward undertaking.
(1) Prior research [12] employed machine learning tech-
niques to infer message formats from plain-text network
traces. However, the flexible and vendor-specific authenti-
cation schemes employed in IoT protocols, e.g., customized
Zigbee link keys [13], render the collection of plain-text
traces a challenging endeavor. (2) Owing to the multitude
of message formats and device properties, IoT protocols
often lack formal definitions of the protocol state machine.
This absence complicates the construction of message de-
pendency relationships. Furthermore, existing methods [6],
[7] that rely on network trace analysis falter in the face of
customized authentication schemes. (3) Driven by a desire
to protect their intellectual property and to avoid exposing
vulnerabilities, IoT vendors are typically reluctant to share



the source code or even binaries of their device firmware.
This reluctance impedes the fuzzer’s ability to collect valu-
able feedback, such as code coverage.

To overcome these limitations, we make a critical ob-
servation: the protocol specification provides rich message
descriptions that can be harnessed to guide the fuzzing
process. Firstly, given that these descriptions include the
introductory details of the message header and payload
formats, they can be extracted to enhance message cover-
age and craft effective mutation operators. Secondly, these
descriptions often subtly delineate message dependencies
through the interaction of device properties. For instance,
the description of the Zigbee Identify message, “This then
starts the device’s identification procedure,” and that of the
AddGrouplfldentifying message, “The message allows the
device to add a group on the condition that it is identifying
itself,” suggest a correlation between these two messages in
the context of the device’s identifying status. Lastly, these
descriptions outline the workflow of message processing
and response generation, which can be utilized to evaluate
the testing case. Given a transmitted testing case and the
subsequent response, one can leverage the descriptions to
determine whether the message execution aligns with the
specification, leading to a legitimate device state transition,
or if the execution contravenes the specification, resulting
in an unspecified device state transition. Testing cases that
trigger device state transitions will be preserved as new
fuzzing seeds for use in subsequent fuzzing rounds.

Leveraging the specification to guide IoT fuzzing ne-
cessitates capabilities in text summarization and reasoning.
While these tasks are relatively straightforward for humans,
they can be laborious and prone to errors. For instance,
summarizing the formats for over 140 message types spec-
ified in Zigbee’s 1,213-page document could consume days
of human effort. Motivated by the recent strides made by
large language models (LLMs) in various natural language
processing tasks, we propose to augment an LLM with
specification content and direct it to answer protocol-related
questions. The generated responses are then utilized to fa-
cilitate various fuzzing phases. We have chosen Zigbee [14]
as our target IoT protocol, as it has been implemented
in nearly 300 million nodes globally. Specifically, we first
apply an LLM augmentation approach, infusing the LLM
with the specification content. Then, the augmented LLM
is tasked with two duties: Protocol Information Extraction
and Device Response Reasoning. For the task of protocol
information extraction, the LLM is asked to extract useful
protocol information, such as message formats, intriguing
field values, header structure, and message dependencies
from the specification. This approach addresses limitations
L.1 and L.2. For the task of device response reasoning, the
LLM, given the details of a generated testing case and the
device response, uses the message description to determine
if the testing case prompts a device state transition. The
result is subsequently employed to evaluate the test case,
addressing limitation L.3.

Finally, we propose a fuzzing algorithm, LLMIF, which
incorporates the LLM into Zigbee fuzzing. In each fuzzing

round, LLMIF first utilizes the LLM-extracted informa-
tion (message payload formats, interesting field values, and
header structure) to generate seeds and perform mutation.
Then it transmits the generated testing cases to the target
device, monitors device crashes, and waits for the device re-
sponse. With the collected response, LLMIF further instructs
the augmented LLM to evaluate the quality of the testing
cases. For those cases that promote device state transitions,
LLMIF enriches them to construct new seeds based on the
extracted message dependency relationship. These seeds are
prioritized to be used in the later fuzzing rounds.

Our evaluation results demonstrate the effectiveness of
LLMIF in terms of code coverage and vulnerability identi-
fication. Compared with the baseline, LLMIF improves the
message coverage by 55.2% and code coverage by 53.9%.
Moreover, LLMIF is highly effective at finding critical vul-
nerabilities in Zigbee protocol implementations. We tested
11 real-world Zigbee devices and successfully identified
eight zero-day vulnerabilities. Seven of them are missed
by the existing fuzzers. In summary, our work makes the
following contributions.

o We utilize the augmented large language model
(LLM) to analyze the protocol specification and
overcome the limitations of IoT fuzzing, i.e., un-
known message formats, unresolved message depen-
dencies, and lack of testing case evaluations.

e« We incorporate the augmented LLM into Zigbee
fuzzing and propose a fuzzing algorithm LLMIF. It
utilizes the LLM’s result to enhance different fuzzing
phases including seed generation, mutation, testing
case evaluation, and testing case enrichment. We
also implement a prototype for fuzzing real-world
Zigbee devices [15].

e We conduct experiments that demonstrate LLMIF’s
effectiveness. Compared with the baselines, LLMIF
is more effective in increasing the coverage of the
message type and the protocol implementation code.
Besides the enhanced coverage, LLMIF discovered
11 vulnerabilities in off-the-shelf Zigbee devices
including eight zero-day vulnerabilities, the majority
of which are missed by existing fuzzers.

2. Background

In this section, we start by introducing the main concepts
in Zigbee and then provide some background on large
language models.

2.1. Zigbee Protocol

Zigbee is a communication protocol built to provide low-
power, low-cost wireless mesh networking for IoT devices,
and it regulates a range of device functionalities, e.g., light-
ing and locking. To provide seamless communication within
the Zigbee ecosystem, Zigbee Alliance provides the concept
of “cluster” in the protocol specification [16], which defines
a set of common message formats and data structures that



TABLE 1: Format of the ”Add Group If Identifying” mes-
sage

Number of Bytes 2 Variable
Data Type uint16 string
Field Name Group ID Group Name

devices can follow. For example, Zigbee specifies a “Group”
cluster (Cluster ID 0x0004), which allows devices to be
assigned to one or more groups and supports simultaneous
control of several devices. The cluster defines several de-
vice properties, e.g., group table, which the device should
support to specify the current grouping states. Moreover,
the cluster defines six message types with fixed payload
formats for communication purposes. For example, Table 1
shows the format of the “Add Group If Identifying” message
(Command ID 0x05), which adds the group specified in the
message payload if the device currently is in identifying
status. Any message that violates the format, e.g., missing
fields or invalid field values, will be regarded as malformed
commands and filtered by the target device without further
processing.

Due to the widely covered device functionalities, Zigbee
specifies a large number of message formats. For example,
Zigbee specifies 22 standard clusters that cover more than
140 message types. Besides a large number of messages,
these messages are also widely intertwined with each other
through common device properties, i.e., the prerequisite of
a message execution relies on specific settings of device
properties, which are updated by other message executions.
As a result, they form various message dependencies. For
example, the “View Group Membership” message execution
depends on the “Add Group” message execution because its
execution relies on the “Add Group” message to properly
set the entry in the group table.

2.2. Large Language Models

Large language models (LLMs) are a type of machine
learning model that can process and generate natural lan-
guage text. Fundamentally, they are trained on massive
amounts of text data to perform statistical language mod-
eling and word prediction. In particular, LLMs achieve
amazing performance in text summarization, text reason-
ing, and contextual conversations. For example, a recent
study [17] shows that summaries generated by the LLM are
favored by human annotators over the reference summaries
in the document. [18] shows that LLMs can perform well in
comprehending the given document, e.g., radiology reports
and doctor-patient dialogue, and reason it with domain
knowledge. Finally, [19] shows that LLMs have the poten-
tial to understand the history of conversation and generate
responses that are contextually relevant and coherent with
the previous conversation turns.

One of the advantages of LLMs is that they can be
quickly adapted to a specific task, e.g., mental health classi-
fication [20], question and answering [21], and penetration

testing [22]. To achieve the goal, prompt engineering is
commonly employed [23]. In the prompting paradigm, a
pre-trained LLM is provided with a snippet of text as an
input and is expected to provide a relevant completion of this
input as output. Prompt engineering is intended to provide
a set of principles and techniques for designing prompts
to squeeze out the best performance from these machine
learning models.

While LLMs hold great promise as general task solvers,
recent studies [24] show that they suffer from important lim-
itations hindering a broader deployment. The first limitation
is that they lack domain-specific knowledge, which makes
them insufficient when performing domain-specific tasks.
The second limitation is that they usually provide nonfactual
but seemingly plausible predictions, often referred to as
“hallucinations”. As a result, a growing research trend [25]
emerged to augment LLMs with domain knowledge for
addressing the above limitations, which is known as “Aug-
mented language models” (ALM).

3. LLM Augmentation with Specification

In this section, we discuss our approach to augmenting
the LLM for IoT fuzzing. We start by showing that LLM
lacks understanding of the IoT protocol, which highlights
the necessity of infusing it with domain knowledge, i.e.,
the specification contents. Then we detail our augmentation
approach.

3.1. LLM’s Understanding About Zighee

Pre-trained on vast volumes of internet data, large lan-
guage models have assimilated knowledge from diverse
fields. Their effectiveness has been demonstrated across
a variety of tasks, including, notably, question answering.
Inspired by recent work [6] which utilizes the LLM’s in-
ternal knowledge to guide network protocol fuzzing, e.g.,
RTSP, we are curious about a question: Does the LLM have
sufficient understanding of the IoT protocol, e.g., Zigbee,
such that they can output useful protocol information to
guide the fuzzing process?

We initiate a case study to explore the answer to the
above question. Specifically, we select four popular LLMs
as the target: openAl’s chatGPT [26], Meta’s LLama 2 [27],
Google’s PaLM [28], and Anthropic’s Claude [29]. Benefit-
ing from billions of model parameters, these LLMs have
been widely used and shown to be effective in various
tasks. They are required to address the limitations of existing
Zigbee fuzzers and construct the Zigbee message payload
format. We select 96 message types from the 22 standard
Zigbee clusters to construct the baseline, each of which
contains at least one field in their payloads. We specified two
sub-tasks to evaluate the LLM’s performance. (1) Message
identification: the LLM should output the correct message
name. (2) Format inference: The LLM should output the
correct field name and field data types for each message. A
message format is successfully constructed only if the name
is correctly identified and its format is correctly inferred.
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Figure 1: Evaluations of general-purpose LLM’s understand-
ing for IoT protocols

Figure la and Figure 1b show the evaluation result.
Among the 96 message types, these LLMs only successfully
construct 15 message formats on average, which achieves a
low recall of 15.6%. Consequently, if the LLM is directly
used for guiding the fuzzing process, the fuzzer will achieve
a low message coverage and omit critical bugs lurking in
the processing logic of these missing messages. The above
result reveals that LLMs do not have enough understanding
of the IoT protocol, and it is necessary to augment it with the
domain knowledge, i.e., the protocol specification, before
performing protocol fuzzing. We also provide a demonstra-
tion in our complementary material [15] for reference.

3.2. Augmentation Approach

Common paradigms for LLM augmentation follow the
retrieve-then-read pipeline [30]. First, due to the LLM’s lim-
ited context size, a knowledge retriever is needed to retrieve
task-related knowledge from external knowledge sources,
e.g., Wikipedia pages. Second, the retrieved knowledge is
fed into the LLM which adapts it to the downstream task,
e.g., question answering. In this work, we aim to retrieve
the message descriptions from the specification as domain
knowledge and infuse them into the LLM.

Unlike previous works [31], [32] which require a large
volume of training data and train a neural retriever, to
retrieve the message descriptions, our observation is that
the specification documents are usually organized in well-
formed file formats, e.g., PDF, which records fruitful meta-
data for knowledge indexing and searching. In particular,
the document outline records semantically meaningful titles,
e.g., “3.5.2.3 Commands Received”, which can help to
localize the corresponding sections that contain message
descriptions. Given the specification document, we first
parse it and build the hierarchy of the outline. Each entry
in the hierarchy corresponds to a section, which records the
section level, section name, and the covered pages. Then we
use regular expressions to match the entries whose section
name contains the keyword “commands received”. For all
matched entries, we further track their children entries, each
of which represents a subsection discussing a specific cluster
message, e.g., “3.5.2.3.1 Identify Command”. As a result,
we use the page contents covered by these subsections to
build the domain knowledge of the corresponding messages.
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Figure 2: LLMIF workflow

We identified 271 pages and 596,140 characters for 147
cluster messages.

To augment the LLM with the extracted domain knowl-
edge for downstream tasks, e.g., extraction of message pay-
load formats, we further employ the background-augmented
prompting technique [25], which uses the domain knowl-
edge to construct task-specific prompts. Specifically, given
the retrieved message descriptions ¢ and the downstream
task instruction ¢, e.g., “summarize the Add Group mes-
sage format”, we concatenate ¢ and ¢ to build a prompt
which drives the LLM to base on the specification con-
tents and construct the message format. Compared with the
fine-tuning technique [33], [34], the background-augmented
prompting approach avoids the significant tuning cost [35],
[36]. Moreover, considering that not all LLMs are open-
source and support fine-tuning, the prompting technique is
more general and can be employed with any LLMs.

4. LLM-Guided IoT Fuzzing

With the augmented LLM, we develop an LLM-guided
fuzzing algorithm, LLMIF, to tackle the limitations of ex-
isting fuzzers. Figure 2 shows the workflow. The input to
LLMIF is the specification document, and the output is the
testing cases that crash the target device. Specifically, (1)
LLMIF first uses the augmented LLM (Section 3) to analyze
the specification and extract four types of protocol infor-
mation: message payload format, interesting field values,
message header structure, and message dependencies. The
extraction process is performed only once before the fuzzing
process starts, such the extracted information can be directly
used in later fuzzing phases without communicating to the
LLM. Then LLMIF starts and loops the fuzzing round (Step
2 -'5). (2) In each round, LLMIF first determines the seed.
It checks if there are any testing cases enriched in previous
rounds. If that is the case, LLMIF picks one and uses it as
the seed. Otherwise, LLMIF leverages the extracted header
structure, payload format, and interesting field values to
generate a message from scratch as the testing case. (3)



After the seed is determined, LLMIF further mutates the
seed and generates testing cases. The mutation phase also
exploits the extracted information to mutate fields in the
header and the payload. The generated testing cases are
further transmitted to the target device for execution. (4)
LLMIF sets a timeout and waits for the device response.
If the timeout is reached while no response is collected,
LLMIF repeats the transmission three times. If there are
still no responses, the target device is regarded as crashed,
and the testing case is recorded. Otherwise, LLMIF utilizes
the augmented LLM in real time to analyze the response.
Testing cases that promote the device state transition will be
recorded. (5) Finally, LLMIF enriched the recorded testing
cases by appending new messages that follow the message
dependency relationship. LLMIF further prioritizes their
usage as seeds in later rounds. In the following section, we
will discuss the design of each module in detail.

4.1. Protocol Information Extraction

With the augmented LLM, LLMIF employs the
background-augmented prompting technique (Section 3.2)
to extract four types of protocol information: Message
payload formats, interesting field values, message header
structure, and message dependency relationships.

Message payload format. Figure 3a illustrates the
prompt template for message format extraction. The tem-
plate has two slots, “message name” and “message de-
scriptions”, which are used to encode the retrieved message
descriptions. Note that the message descriptions may span

N
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(a) Message payload format (b) Message dependency

Figure 3: Prompt templates for protocol information extrac-
tion

multiple pages and the size may exceed the LLM’s context
limit. As a result, we propose a summarization approach to
generate concise message descriptions for constructing the
prompt. Specifically, given a message description that spans
from page m to page n (m < n), we first ask the LLM to
summarize information about the message format recorded
on each page i. Then we aggregate the summary of each
page as the final message description and encode it into

Effect Identifier | Effect Variant Description
Field Value Field Value e
0x00 (default) | Fade to off in 0.8 seconds
0x01 No fade
0x00
0x02 50% dim down in 0.8 seconds then fade to off in 12 seconds
0x03 to Oxff | Reserved
0x01 0x00 (default) | 20% dim up in 0.5s then fade to off in 1 second
0x01 to Oxff | Reserved
0x02 to 0xff 0x00 to Oxff | Reserved

Figure 4: Interesting values for “Off with Effect” message

the final prompt. In order to instruct the LLM to generate
well-formed answers for further parsing, we employ few-
shot learning technique [37] and drive the LLM to generate
JSON representation, where the key is the message name
and the value is the field information (field name: field data
type). We constructed 147 model prompts, each of which is
for a specific cluster message, and used chatGPT-3.5-turbo
as the LLM to construct their formats. Then we evaluate
the construction accuracy for the 96 messages whose pay-
loads contain at least one field. The result shows that the
augmented LLM successfully constructs the formats for all
cluster messages.

Interesting field values. Besides the payload format,
we also find that the message descriptions record a large
number of interesting field values. In particular, we catego-
rize two types of interesting values from the specification.
(1) Dangerous values. These values are prohibited by the
specification for setting fields. For example, the specification
requires that the GroupID field in the “Add Group” message
should be within 0x0001 - Oxfff7. Values outside the range,
e.g., 0x0000, are invalid and should not be used for setting
the field. (2) Functioning values. These values are used to
trigger the specific device functioning logic. For example,
Figure 4 shows that when the EffectVariant field value
of the “Off With Effect” message equals 0x02, the target
device should perform 50% dim down in 0.8 seconds. Since
these interesting values can help to generate initial seeds
that explore diverse device functioning and error-handling
logic, we use the augmented LLM to collect them. As
a result, we constructed 96 prompts, and the augmented
LLM successfully collected 421 functioning values for 68
message fields. Moreover, it collects 83 dangerous value
intervals which are related to 69 message fields.

Message header structure. The message header con-
tains important fields which are valuable for mutation.
Therefore, with the descriptions of the message header, we
drive the LLM to draw the structure of the message header.
As a result, it successfully extracts seven fields in the header.
One important field is the “Disable Default Response” bit
field. Upon receiving a message, a Zigbee device will check
this bit to determine if it should generate a response. By
mutating this bit, the fuzzer can ask the target device to
generate responses to the received testing cases, and the
response, in turn, can be used as feedback to evaluate the
quality of the testing cases (Section 4.4).

Message dependencies. As discussed in Section 2.1,
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Figure 5: Illustrations of seed generation

Zigbee messages are implicitly correlated with each other
through common device properties. That is, messages A and
B have a dependency relationship (A — B) if the execu-
tion of A updates some device properties that B examines
before its execution. Since the message description usually
details how a message interacts with the device property, the
augmented LLM should be able to reason if two messages
have dependency relationships. Figure 3b shows the model
prompt template for message dependency construction. The
template takes the descriptions of two messages as input to
construct the domain knowledge. Different from the previ-
ous tasks which ask the LL.M to perform text summarization,
the construction of message dependencies requires activating
the LLM’s reasoning capability. That is, the LLM should
first understand the device properties that the two messages
respectively interact with, then determine if they work on
the same properties. As a result, we employ the chain-of-
thought technique [38] to drive the LLM to think step-
by-step. With the prompt template, we constructed 21,609
prompts, each of which is for examining a specific message
pair. As a result, the augmented LLLM successfully constructs
968 message dependencies among the 147 cluster messages.

4.2. Seed Generation

LLMIF further utilizes the extracted message informa-
tion to facilitate seed generation, which is illustrated in
Figure 5. Specifically, for each constructed message format,
LLMIF assigns it a unique message identifier:

MID = (clusterID, cmdID)

where clusterID identifies the cluster of the message and
cmdID identifies the message in the cluster’s message set.
Moreover, LLMIF uses the message format to build a set of
message templates and maintains the mapping from MID to
the template:

{MID — {(field_name;, field_type,, field_value;)}

where ¢ is the index of fields in the corresponding. The
field_value slot in the template marks the regions to be filled

with detailed values for generating well-formed messages.
Similarly, LLMIF also maintains the mapping from MID to
the extracted interesting values:

MID — {(field_name;, {value_interval;})}

where ¢ indexes the field and j indexes the recorded inter-
vals of interesting values for the i’s field. In each fuzzing
round, a random MID is first selected, e.g., (0x0004, 0x00)
representing the “Add Group” message from the Groups
cluster. Then LLMIF retrieves the corresponding message
template and identifies the slot to be filled. For example,
the template of the “Add Group” message contains two field
slots to be filled, and the value types should be uint16 and
string, respectively. To determine the concrete field value,
the fuzzer first uses the MID and the field name as the key-
word to look for interesting values. If there are any recorded
value intervals for the field, LLMIF randomly selects an
interval and samples a value as the concrete value to fill the
slot. Otherwise, LLMIF follows the data type and randomly
generates concrete values. For example, after checking that
the GrouplD has two interesting value intervals, LLMIF ran-
domly selects the interval [0x0000, 0x0001) and samples a
value 0x0000 for the GrouplD field. As for the GroupName
field which has no recorded interesting values, it randomly
generates a string “TestGroup” as the field value.

Besides setting the message payload, LLMIF also lever-
ages the extracted header structure to properly set the
message header. We here discuss three important fields.
(1) Manufacturer-specific bit. This bit is for determining
whether the current message is from the Zigbee cluster
specification or created by the manufacturer. Since LLMIF
mainly focuses on the messages recorded in the specifica-
tion, the bit is set to zero. (2) Direction bit. The bit is used
to denote whether the message is a request message or a
response to a previously received request. Since in most
cases the fuzzer acts as the client to transmit the request to
the target device, this bit is set to zero which denotes that
the message is a request. (3) Disable Default Response bit.
As introduced in Section 4.1, this bit is critical for collecting
responses from the target device. As a result, LLMIF sets the
bit to zero, which asks the target device to always generate
a response for every received message.

4.3. Seed Mutation

To mutate the generated seed, LLMIF leverages the ex-
tracted protocol information to specify two types of mutation
operators: type-aware mutation and header-aware mutation.

Type-aware mutation. LLMIF exploits the knowledge
about the data type of each field to perform type-aware
mutation. Specifically, we first summarize the extracted data
types and categorize them into two classes: Fixed-length
type and variant-length type. The former is commonly used
for numerical data types, e.g., uint32 and enuml6, while
the latter is commonly used for string types, e.g., character
string and octet string. In particular, the variant-length type
usually has additional grammar requirements. For example,



it requires that the first byte should be the length of the
string followed by the string contents.

Given a message and its format, the fuzzer traverses the
data type of each field and determines the corresponding mu-
tation operator. For the field with the fix-length type, LLMIF
uses the extreme value operator to mutate them. By setting
the numerical values with extreme values, e.g., 0x0000 and
Oxffff, it aims to trigger out-of-range vulnerabilities. As
for the field with variant-length type, LLMIF utilizes the
following two mutation operators. (1) Byte expansion. By
increasing the string content and the corresponding length
byte, LLMIF aims to trigger buffer and heap overflow.
(2) Suspicious length. By mutating the length byte of the
variant-length field, LLMIF aims to create inconsistencies
and trigger memory leakage or null pointer de-reference
vulnerabilities. Besides the above type-aware mutation op-
erators which tamper with the field value, LLMIF randomly
removes some message fields and deliberately creates mal-
formed testing cases. These cases may crash the target
device if the payload domain is not properly parsed.

Header-aware mutation. LLMIF also exploits the
structure of the message header and enforces a set of header-
aware mutation operators. (1) Crafted command identifier.
LLMIF corrupts the command identifier field with randomly
generated values. (2) Bit flipping. By flipping the specific
bits in the message header, the fuzzer mutates the frame
type, the message source, and the message direction, aiming
to test the correctness of the header parsing procedure and
to trigger unexpected message processing logic. Note that
in order to guarantee the response collection, the Disable
Default Response field is not flipped.

4.4. Response Reasoning

The generated testing case will be transmitted to the
target device for execution. In order to guarantee the same
initial state for each testing case execution, LLMIF first
transmits a general Zigbee message “Reset to Factory De-
fault” (clusterID=0x0, commandID=0x0) which initializes
the device state. After the testing case is transmitted to the
target device and a response is collected, LLMIF leverages
the augmented LLM to reason the response and evaluate the
testing case. The idea is based on two key observations. (1)
The response generated by the target device usually contains
a status code, which marks the execution status of the testing
case. For example, the status code 0x00 implies that the
last message was successfully executed, while 0x80 implies
that the last message was malformed. (2) The message de-
scription details various circumstances under which specific
status codes should be generated. For example, when an
Add Group message with normal field values is received,
the specification requires that “...the device adds the values
of the Group ID and Group Name fields to its Group Table
and the status shall be SUCCESS...”. As another example,
when an Add Group message with dangerous field values is
received, the specification requires that “...the device verifies
that the GrouplID field contains a valid group identifier
in the range 0x0001-0xfff7. If the GrouplD field contains
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Figure 6: Prompt template for response reasoning

a group identifier outside this range, the status shall be
INVALID_VALUE..”.

The above observations show that combined with the
message description, the response can be used to evaluate
the quality of the testing cases. (1) The status code in
the response can be used to check if the testing case was
successfully executed and changed the device state. For
example, if an Add Group message receives a response with
a SUCCESS status code, it implies that the device property,
in particular, the group table, has been updated and device
state transitions happened. As a result, such testing cases
deserve to be kept for further investigation. (2) The status
code can be used to initiate conformance testing, which
detects if the message execution violates the specification
and drives the device into dangerous and unspecified states.
For example, if an Add Group message with GrouplD
0x0000 receives a response with SUCCESS status code,
which is supposed to be INVALID_VALUE according to the
specification, it implies that the crafted message successfully
pollutes the group table. Since these testing cases violate the
specification and put the device into unspecified states, they
are also valuable for further investigation.

However, considering the large number of status codes,
message descriptions, and the large number of testing cases
generated in each fuzzing round, it is almost impossible
to get humans involved and reason the response of each
testing case. To overcome the challenge, LLMIF utilizes the
augmented LLM to perform the task. The model prompt
template is shown in Figure 6. It takes three pieces of
information as inputs: Message description, message de-
tails, and message execution status. For each testing case,
LLMIF first checks the message in the case and fetches its
description to augment the LLM. Since response reasoning
requires the detail of the message, e.g., the GroupID values,
LLMIF further concatenates the field names and values of
the message into a string to construct the message detail.
Finally, LLMIF extracts the execution status code from the
device response, constructs the prompt, and asks the LLM
to determine if the device state transition happens. Either a
normal state transition that aligns with the specification or an



abnormal state transition that violates the specification will
promote LLMIF to record the corresponding testing case for
further investigation.

4.5. Testing Case Enrichment

Once a testing case draws the attention of the LLM
and is recorded by LLMIF (Section 4.4), it is enriched
to construct new seeds. For each testing case, we define
its interacted device properties as the one that is altered
by the last message. As a result, when enriching testing
cases, we only consider messages that are dependent on the
last message, such that the enriched case will examine the
interacted device property.

Specifically, given a testing case s = [my, ..., m,,] which
contains n messages, the task of testing case enrichment
is to construct a suitable message m,y; which can be
concatenated to the end of s, such that every neighbor-
ing message pair in the constructed message sequence
s’ = [mq,....mp, my11] follows the message dependency
relationship.

LLMIF leverages the extracted message dependency re-
lationship to perform the task. Specifically, the dependencies
are stored in the form of message pairs:

D= {d : (MIDpre,MIDcon)}

where the preceding message and the consecutive message
represented by the corresponding MID are correlated for the
common device property. Given a testing case s, LLMIF first
fetches the MID of the last message m,,, and looks for the
set of candidate messages M which have correlations with
s, i.e.,

M = {MID|(m,,.MID, MID) € D}

After M is determined, LLMIF randomly selects a MID
from M and follows Section 4.2 to initialize the message
mn+1 Whose message identifier equals to MID. Finally, the
testing case is enriched with the new message, i.e., s’ =
s + [mp41], and §" is saved into the seed corpus and is

prioritized to be selected in the next fuzzing round.

4.6. Fuzzing Tool Implementation

Unlike fuzzing traditional network protocols, e.g.,
SMTP [39], fuzzing real-world Zigbee devices requires the
support of specific radio modules (e.g., CC2530). To fuzz
the real-world Zigbee device, we design a fuzzing tool
that contains two components: Fuzzing controller and stack
controller. The fuzzing controller is responsible for running
LLMIF and organizing the fuzzing workflow. In particular,
chatGPT-3.5.turbo is used as the large language model. The
stack controller, on the other hand, works as a driver to
operate a programmable Zigbee radio and provides funda-
mental support for Zigbee communication, e.g., message
transmission and reception.

The fuzzing controller leverages the idea of “building
block” to construct the message, which is commonly used

in generation-based fuzzing [4], [40]. Specifically, we imple-
ment 47 basic data types specified in Zigbee specification,
e.g., enum8 and string, and use them as the building block
for assembling the message payload. As a result, the ex-
tracted protocol information, e.g., the message format and
interesting value repositories, can be easily integrated into
the assembling process. We further implement a total of
seven mutation operators (Section 4.3) to perform mutation.
The fuzzing controller is implemented in Python with 3,000
lines of code, and it runs on a Raspberry Pi 4 with Ubuntu
20.04 operating system.

The stack controller aims to create and maintain the
Zigbee communication channel with the target device. Con-
sidering availability and popularity, we select CC2538 with
a fully compliant Zigbee solution Z-Stack [41] as the hard-
ware radio. We develop a driver on top of Z-Stack and
transform CC2538 into a Zigbee node. The node forms
a fully-controlled Zigbee network which allows the target
device to join. On the one hand, it communicates with
the fuzzing controller through the universal asynchronous
receiver/transmitter (UART) channel, i.e., receiving testing
cases and forwarding device responses. On the other hand,
it communicates to the target device through the transpar-
ent and authenticated Zigbee network, i.e., transmitting the
testing case and monitoring device responses. The driver is
developed with 1,000 lines of C codes.

5. Evaluation

To evaluate the effectiveness of LLMIF, we seek answers
to the following questions.

Q1: Code coverage. How much more code coverage
does LLMIF achieve compared to the baseline?

Q2: Ablation. What is the impact of the extracted
protocol knowledge on the performance of LLMIF?

Q3: Bug identification. Is LLMIF capable of discover-
ing previously unknown bugs on real-world devices?

In the following sections, we introduce our implemen-
tation and our experimental setup. Finally, we discuss the
evaluation results for the above questions.

5.1. Experimental Setup

Z-Stack simulation for code coverage evaluation.
During our experiment, we found that it is challenging to
evaluate code coverage. The main reason is most Zigbee
device vendors do not open-source their stack implemen-
tations (either source codes or binary firmware), such that
we cannot instrument the stack implementation to calcu-
late statement/edge coverage, and only black-box fuzzing
can be initiated. The only open-source Zigbee stack we
found is the Z-Stack of Texas Instruments [41]. Inspired
by [4], we leverage the IAR development toolchain and
set up a simulation platform, which supports simulating
stack execution, Zigbee message transmission/reception, and
most importantly, coverage analysis. (1) We write a stack
driver (900 lines of C code) to build a Zigbee end device



application. The stack driver and the stack source codes
are used by the simulation tool C-SPY, which allows us to
create a simulated end device as the target device. Our driver
registers a set of plugins provided by Z-Stack, such that the
simulated end device can support 154 cluster messages from
the 22 standard clusters, compared with the driver [4] which
only supports 22 messages.

(2) We use shared files to simulate the communication
channel between the fuzzer and the simulated target device.
By writing and reading the shared file, the fuzzer and
the simulated device can simulate the over-the-air Zigbee
message transmission/reception, respectively.

(3) Given a generated testing case, we use the code cov-
erage analysis and the static analysis tools provided by the
IAR toolchain to calculate the statement coverage and edge
coverage, which will be detailed in Section 5.2.

(4) By checking the output of the simulation tool, we
determine if the testing case triggers exceptions of the
simulated device and causes the crash. The call stack for
processing the testing case is used for categorizing the
crashing type and clustering crashing cases. Moreover, the
crashing cases are stored for further verification on real-
world Texas Instruments devices (Section 5.4).

Real-world Zigbee devices under test (DUT). Besides
fuzzing the simulation device, we also selected 11 off-the-
shelf Zigbee devices from various vendors for evaluation,
covering well-known brands, such as Philips, Third Reality,
Sengled, Aqara, and Tuya. The types of selected devices
include smart switches, plugs, lighting, locks, and sensors.
These devices are either recommended by Amazon or the
well-selling products in supermarkets. Note that some de-
vices have been found with zero-day vulnerabilities and have
not been fixed yet. As a result, we anonymize the names of
these devices and their models. We promise to de-anonymize
the device details once these vulnerabilities are fixed by the
vendor and the disclosure period is reached.

Baseline methods. We select four popular Zig-
bee fuzzing tools as the baseline: BooFuzz [42], Z-
FuzzeRr [4], BEEHIVE [5], and chatAFL [6]. They are
either widely used in industry or reported in top security
conferences. Moreover, the design of these tools covers the
existing solutions to important fuzzing tasks, in particular,
message format construction and interesting value collec-
tion, which makes them suitable for comparison with our
method. Specifically, BOOFUZZ is a famous grammar-based
fuzzing tool that is customized by [4] to support Zigbee
fuzzing. Z-FUZZER is a coverage-guided Zigbee fuzzing
tool, and it has been used to identify critical zero-day
vulnerabilities in the Z-Stack. BEEHIVE studies the cluster
message format, and manually extracts a set of interesting
values for enumeration of field values. Finally, CHATAFL
uses the LLM to guide the fuzzing process, in particular,
message format construction and has been used for fuzzing
network protocols (e.g., RTSP). While it is not designed
for Zigbee fuzzing, we use its proposed prompt engineering
technique and extend it to support Zigbee message format
construction and fuzzing.

LLM usage. In our experiment, we use chatGPT-3.5

as the general-purpose LLM. The LLM accepts one hyper-
parameter, temperature € [0, 1], which regulates the ran-
domness and creativity. To mitigate the LLM’s hallucination
problem (i.e., high false positives in the generated answers),
the parameter is set to zero. The same setting applies to the
baseline method. Since chatAFL is the only LLM-guided
fuzzing tool among the baseline methods, it means that
LLMIF and chatAFL will use the same general-purpose
LLM (chatGPT-3.5 in our case) with the same temperature
setting. Because chatAFL purely relies on the LLM’s knowl-
edge base to guide IoT protocol fuzzing, its performance
will reveal the impact of LLM’s insufficient knowledge
(Section 3.1) on IoT protocol fuzzing.

5.2. Coverage Analysis

Message coverage analysis. We first evaluate the mes-
sage coverage when fuzzing with LLMIF, and compare
it with the baselines. Specifically, we aim to measure the
cluster coverage and message coverage for the 11 devices.
To build the ground truth, we first transmit the Zigbee
device object (ZDO) commands to the target device and
scan its supported clusters and commands. One exception
is the device D1, which is a CC2538 module loading the
Z-Stack. Since Z-Stack is open-source, we compiled a Z-
Stack firmware and flashed it into the CC2538 module,
such that it supports the 18 standard clusters with 150
message types. Given a fuzzer, to evaluate if it covers a
message type, we ask the fuzzer to transmit a message based
on its understanding of the message format and check the
response status code. If the message is accepted by the target
device with the status code SUCCESS, the message type is
successfully covered. Otherwise, error codes, e.g., INVALID
FORMAT, imply that the message format is incorrect and
the message is not covered.

The result is shown in Table 2. Our method successfully
covers the 150 message types from the 18 clusters, which
achieves 100% cluster and message coverage. Compared
with the baselines, our method improves the cluster coverage
by 73.1% and improves the message coverage by 55.2%.
Specifically, Z-FuzzgR, BOOFUZz, and BEEHIVE rely on
human efforts to construct the message format, and they
only focus on the foundation cluster, which contains 22
message types in total. For CHATAFL, we initiate 10 rounds
for message format construction, and without the guidance
of the specification, the LLM only reliably constructs the
15 message formats from the Identify, Groups, and Scenes
clusters. Compared with the baseline, we use the augmented
LLM to precisely construct all of the message formats.

Code coverage analysis. We further evaluate the code
coverage and compare our method with the baseline. Unfor-
tunately, as stated in Section 5.1, most off-the-shelf Zigbee
devices do not open source their stack implementations,
such that one can only initiate black-box testing and cannot
collect code coverage statistics. For example, for the 11
devices from 8 vendors, only the Z-Stack from Texas Instru-
ments is open-sourced. As a result, we use our simulation
end device built with Z-Stack (Section 5.1) as the target



TABLE 2: Evaluation results of message coverage and identified vulnerabilities

Device LLMIF Z-Fuzzer BooFuzz BeeHive chatAFL

D Cluster Message Vul. Cluster Message Vul. Cluster Message Vul. Cluster Message Vul. Cluster Message Vul.
Dl 18(100.0%) | 147(100.0%) 5 1(5.6%) | 15(10.2%) 3 1(5.6%) 15(10.2%) 2 1(5.6%) | 22(15.0%) 0 3(16.7%) | 15(10.2%) 0
D2 6(100.0%) 55(100.0%) 2 1(16.7%) | 15(27.3%) 0 1(16.7%) | 15(27.3%) 0 1(16.7%) | 22(40.0%) 0 3(50.0%) | 15(27.3%) 0
D3 5(100.0%) 39(100.0%) 0 1(20.0%) | 15(38.5%) 0 1(20.0%) | 15(38.5%) 0 1(20.0%) | 22(56.4%) 0 1(20.0%) | 6(15.4%) 0
D4 9(100.0%) 70(100.0%) 1 1(11.1%) | 15(21.4%) 0 1(11.1%) | 15(21.4%) 0 1(11.1%) | 22(31.4%) 0 3(33.3%) | 15(21.4%) 0
D5 6(100.0%) 41(100.0%) 0 1(16.7%) | 15(36.6%) 0 1(16.7%) | 15(36.6%) 0 1(16.7%) | 22(53.7%) 0 3(50.0%) | 15(36.6%) 0
D6 3(100.0%) 26(100.0%) 0 1(33.3%) | 15(57.7%) 0 1(33.3%) | 15(57.7%) 0 1(33.3%) | 22(84.6%) 0 0(0.0%) 0(0.0%) 0
D7 6(100.0%) 41(100.0%) 2 1(16.7%) | 15(36.6%) 0 1(16.7%) | 15(36.6%) 0 1(16.6%) | 22(53.7%) 0 3(50.0%) | 15(36.6%) 1
D8 7(100.0%) 51(100.0%) 0 1(14.3%) | 15(29.4%) 0 1(14.3%) | 15(29.4%) 0 1(14.3%) | 22(43.1%) 0 0(0.0%) 0(0.0%) 0
D9 6(100.0%) 52(100.0%) 0 1(16.7%) | 15(28.9%) 0 1(16.7%) | 15(28.9%) 0 1(16.7%) | 22(42.3%) 0 0(0.0%) 0(0.0%) 0
D10 7(100.0 %) 55(100.0%) 0 1(143%) | 15(27.3%) 0 1(14.3%) | 15(27.3%) 0 1(14.3%) | 22(40.0%) 0 3(42.9%) | 15(27.3%) 0
DIl 9(100.0%) 67(100.0%) 1 1(11.1%) | 15(22.4%) 0 1(11.1%) | 15(22.4%) 0 1(11.1%) | 22(32.8%) 0 3(33.3%) | 15(22.4%) 0

Summary 100.0% 100.0% 11 16.0% 30.6% 3 16.0% 30.6% 2 16.0% 44.8% 0 26.9% 17.9% 1
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Figure 7: Coverage comparison

device for code coverage analysis. Specifically, we use the
commonly used metric statement coverage (the number of
covered lines of codes), and edge coverage (the number of
covered code branches) for comparison. We first statically
analyzed 15 source files that implement the Zigbee cluster
functionality to build the ground truth, e.g., “zcl_lighting.c”.
As a result, a total of 1,665 edges and 3,147 statements are
identified. Then for each Zigbee fuzzing tool, we generate
20,000 testing cases and calculate the cumulative rates of
statement coverage and edge coverage. The evaluation result
is shown in Figure 7a and Figure 7b. Finally, we calculate
the coverage improvement by subtracting LLMIF’s coverage
with the best coverage among baselines. Take statement
coverage as an example. Given the total number of 3,147
statements, the best fuzzer (Z-Fuzzer) covers 797 statements
while our method covers 2,493. As a result, the improvement
is calculated as (2493-797)/3147 = 53.9%. The same applies
for the calculation of message coverage.

Compared with the baseline method, LLMIF improves
the edge coverage by 52.0% and 53.9% statement cov-
erage, respectively, which shows the out-performance of
our method. Generally speaking, the low message coverage
results in low code coverage. One exception is BEEHIVE.
While it supports more message types than that of Z-
FUZZER, it achieves low code coverage due to its insuffi-
cient mutation strategies, i.e., only mutating two fields “At-
tributeID” and “AttributeDataTYpe” with a limited number
of interesting values.

Answer to QI1: The experimental result shows that

LLMIF outperforms existing Zigbee fuzzers in terms of
message coverage and code coverage. Compared with the
best baseline fuzzing tool, LLMIF improves the message
coverage, edge coverage, and statement coverage by 55.2%,
52.0%, and 53.9%, respectively.

In particular, compared with chatAFL that purely relies
on the general-purpose LLM’s knowledge base to guide IoT
fuzzing, LLMIF improves the message coverage, edge cov-
erage, and statement coverage by 82.1%, 67.4%, and 64.1%.
The coverage improvement shows the insufficiency of the
general-purpose LLM for fuzzing IoT protocol stacks, and
the advantage of our proposed LLM augmentation method
and our fuzzing algorithm.

5.3. Ablation Study

LLMIF uses the augmented LLM to extract diverse
protocol information for enhancing various fuzzing stages.
To evaluate the contribution of the extracted information, we
conducted an ablation study. For this purpose, we developed
four variants of LLMIF.

e V1: LLMIF with only message formats for seed
generation.

e V2: V1 plus the knowledge of interesting values for
seed generation.

e V3: V2 plus the knowledge of the message header
for initial seed generation and mutation.

e V4: V3 plus the knowledge of message depen-
dencies for initial seed generation, mutation, and
interesting case enrichment.

Table 3 shows the results in terms of edge and statement
coverage. Specifically, we use V'1 as the baseline and eval-
uate the improvement of the three LLMIF variants using
four metrics: Edge coverage, statement coverage, speed-up
(how fast the variant can reach the baseline’s edge coverage),
and probability (the probability of the variant’s coverage
outperformance over ten rounds).

The result shows that all of the extracted protocol in-
formation plays critical roles in terms of coverage improve-
ment. Specifically, when compared with V2, we evaluate
the impact of the extracted interesting values. With 8.61%



TABLE 3: Coverage improvement by protocol knowledge

LLMIF Edge Statement | Speed-up | Probability
variant coverage coverage
V1 1009 1846 1.00 1.00
V2 +8.61% +7.31% 4.23x 1.00
V3 +25.95% +22.98% 7.55x 1.00
V4 +35.77% +35.73% 15.08x 1.00

edge coverage and 7.31% code coverage improvement, we
show that testing cases with interesting values effectively
explore the protocol stack, especially the error handling
logic and the device functioning logic. For example, with
the LLM-extracted step mode values 0xO1 and 0x03, the
fuzzer can generate meaningful Step Saturation messages,
which explore the functioning logic to increase and decrease
the values of the saturation property, respectively.

By comparing V2 with V3, we evaluate the impact of
the knowledge of message formats and message headers.
The result shows that they improve the edge coverage and
statement coverage by 17.35% and 15.67%. The knowledge
benefits the mutation process in two folds. On the one hand,
our mutation operators maintain the message formats of
the generated testing cases, and therefore they successfully
pass the format checking and avoid being filtered. On the
other hand, these operators mutate critical bits and bytes
and create a large number of testing cases that are rare
in legitimate scenarios, e.g., cluster messages with inverse
direction bits.

Finally, we compare V3 with V4 to evaluate the im-
pact of the message dependencies. As a result, the edge
coverage and statement coverage are improved by 9.82%
and 12.75%, respectively. The improvement lies in the fact
that many code branches condition on device properties,
and the generated testing cases can explore these branches
by resolving message dependencies and updating device
properties before branching. For example, the Get Group
Membership message execution will examine the group
entry in the group table only if the group size is larger
than zero. By resolving the message dependency between
the Add Group message and the Get Group Member-
ship message, a testing case with the message sequence
[Add Group, Get Group Membership] can effectively acti-
vate the branch for entry examination.

Answer to Q2: The extracted protocol information
empowers the fuzzing tool for seed generation, mutation,
and interesting case enrichment, which increases the code
coverage by 8.61%, 17.34%, and 9.82%, respectively.

5.4. Real-world Bugs

We evaluate the effectiveness of vulnerability identifi-
cation. For each device under testing, we fuzz it for 24
hours and examine the collected crashing cases. The result
is shown in Table 2. Specifically, LLMIF successfully re-
ports 11 vulnerabilities on five devices, which include three
previously known and eight zero-day vulnerabilities, while

the baseline tools only identified one zero-day vulnerability.
All of the zero-day vulnerabilities have been reported with
five of them being confirmed and three of them under
review. The summary of these vulnerabilities is summarized
in Table 4, and below we provide their details.

Vulnerability 1, 2, and 3. LLMIF successfully iden-
tifies three previously known vulnerabilities (CVE-2020-
27890, CVE-2020-27891, CVE-2020-27892) on device D1.
Specifically, by generating messages with malformed mes-
sage payloads, the fuzzer triggers the device to incorrectly
allocate memory and eventually causes the crash. For the
baseline, Z-FUZZER successfully identified all of them,
while BOOFUZZ missed CVE-2020-27890. Compared with
them, we find different message types which can trigger the
vulnerabilities. For example, we show that besides the Read
Reporting Configuration Response message, one can also
use the Write Attributes Response message to trigger the
vulnerability.

Vulnerability 4 and 5. We further discovered two pre-
viously unknown vulnerabilities on the device D1. Specifi-
cally, these two vulnerabilities are triggered when the Dis-
able Default Response bit in the header is set to 0, i.e., the
response is required. As a result, the device crashes after it
generates the response and prepares to transmit it. Moreover,
no baseline fuzzers identified these two vulnerabilities be-
cause they neither know the corresponding message format
nor the header bit.

Vulnerability 6 and 7. We discovered two vulnera-
bilities on the device D2, which relate to the AddScene
and EnhanceAddScene messages. Specifically, both of these
two messages’ payloads contain a string field “SceneName”.
With our type-aware mutation operators, in particular, sus-
picious length, LLMIF changed the first byte which denotes
the string length to a large value. As a result, when the target
device parses the length byte, it triggers byte overflow, and
the device crashes. No baseline methods identified these two
vulnerabilities because they missed the message format.

Vulnerability 8. We discover a vulnerability on devices
D4 and D11, which is triggered by a message sequence.
Specifically, the device first accepts an AddGroup message
with a dangerous field value: GroupID=0x0000. This mes-
sage puts the device in a dangerous state. Then our fuzzer
extends the testing case with a GetGroupMembership, which
is used for querying the group list with a field named
“GroupCount”. We find that the GroupCount field can ar-
bitrarily control the length of the returned group list. For
example, if groupCount field equals 3, the target device will
return 6 bytes representing three GroupIDs. Surprisingly, all
the returned GroupIDs are 0x0000. As a result, by setting the
GroupCount field to a relatively large number, e.g., 0xAO,
the target device tries to return a long group list, and a large
number of bytes overflows the transmission buffer, which
crashes the device. No baseline fuzzers identified the vul-
nerability because of the lack of knowledge about dangerous
field values and message dependency relationships.

Vulnerability 9. This vulnerability exists on the de-
vice D7. Specifically, the message payload has two fields:
GroupCount (uint8) and GroupList (Array[uint16]). When



TABLE 4: Case studies of discovered vulnerabilities

Vulnerability Device Vulnerable Message Cause Security Status
ID ID Sequences Issue
1 Dl [DiscoverCommandsResponse] Field removal mutation Device crashed CVE-2020-27892
2 D1 [WriteAttributesResponse], Field removal mutation Device crashed CVE-2020-27891
[ReadReportingConfigurationResponse]

3 D1 [WriteAttributesNoResponse] Field removal mutation | Attribute update failed | CVE-2020-27890
4 D1 [WriteAttributesUndivided] Header-aware mutation Device crashed Under review

5 D1 [PowerProfileRequest], Header-aware mutation Device crashed Under review

[WriteAttributesResponse]

6 D2 [AddScene] Type-aware mutation Device crashed Confirmed

7 D2 [EnhanceAddScene] Type-aware mutation Device crashed Confirmed

8 D4, D11 [AddGroup, GetGroupMembership] Interesting field value, Device crashed Confirmed

message dependency
9 D7 [GetGroupMembership] Type-aware mutation Device crashed Confirmed
10 D7 [Non-existing command] Header-aware mutation Device bricked Under review

GroupCount is larger than the number of GrouplD in the list,
the device crashes. By applying the extreme-value mutation
operators on the GroupCount field, our fuzzer successfully
triggered the vulnerability. CHATAFL also reported this
vulnerability.

Vulnerability 10. Finally, we discovered a vulnerability
on the device D7, which is triggered by a message with
a malformed header. Specifically, by mutating the message
identifier field in the header with a non-existing message
identifier 0x13, the device stopped working. Even worse, it
becomes bricked and does not work anymore, even when
we push the factory reset button and recycle the power.
No baselines report the vulnerability due to the lack of
knowledge about the message header.

Answer to Q3: LLMIF is effective in vulnerability iden-
tification, which reveals three previously known and eight
previously unknown vulnerabilities, respectively. Among the
eight previously unknown vulnerabilities, seven of them
(87.5%) are not reported by the baseline fuzzers.

6. Discussions

LLM for network protocol fuzzing. chatAFL [6] is the
first work which uses the LLM to fuzz network protocols.
However, with the same general-purpose LLMs (e.g., chat-
GPT 3.5), LLMIF outperforms chatAFL in terms of code
coverage and bug identification for the following reasons.

(1) Specification-augmented prompting for driving
LLMs. LLMIF uses the background-augmented prompting
method (Section 3.2) which drives the general-purpose LLM
to analyze specification contents. Compared with chatAFL
that directly drives the general-purpose LLM by the few-
shot learning prompting method, LLMIF successfully aids
the issue of LLM’s insufficient domain knowledge, and
achievese precise protocol information extraction.

(2) Advanced fuzzing algorithms for guiding various
fuzzing phases. LLMIF utilizes the output of the LLM
(i.e., extracted protocol information) to guide the phases
of seed generation, seed mutation, and testing case en-
richment. Moreover, LLMIF leverages the LLM to reason

about the device response and guides the phase of testing
case prioritization. Compared with chatAFL that uses the
LLM to guide only two phases (seed mutation and testing
case enrichment), LLMIF achieves a broader (four) phase
coverage, and results in a significant improvement for the
code coverage (Section 5.3).

LLMIF’s generality for other IoT protocols. In this paper,
we mainly use Zigbee as the target protocol. However,
LLMIF can be extended to fuzz IoT protocols beyond
Zigbee. Specifically, users only need to take two steps,
i.e., update the input specification and replace the hardware
radio. To demonstrate LLMIF’s generality, we target the Z-
Wave protocol and design a case study. More details can be
found in our complementary materials [15].

Update the input specification. LLMIF relies on the pro-
tocol specification to augment the LLM and extract critical
message information. As a result, users need to provide as
inputs the specification that details the messages of the pro-
tocol under fuzzing, e.g., Z-Wave Command Classes [43].
With our document slicing and the background-augmented
prompting methods (Section 3.2), LLMIF will extract the
precise protocol information (e.g., message format and mes-
sage dependency), and use them to guide the fuzzing round.

Replace the hardware radio. To fuzz the real-world
device with a specific IoT protocol, a hardware radio is
necessary for transmitting the testing case and receiving
the response within a specific wireless channel. Users need
to prepare the corresponding hardware (e.g., CC2530 for
Zigbee), download the commercial protocol stack (e.g., Z-
Stack), and implement the driver that interacts with LLMIF.
The implementation of the driver depends on the develop-
ment environment of the commercial protocol stack, and
our implemented driver for Z-Stack provides an example
(Section 4.6).

7. Related Work

Format-aware IoT fuzzing. Format-aware fuzzing tools
generate messages based on the well-formed message tem-
plate [3], [4], [5], [10], [42], [44]. Specifically, [42] proposes



a network protocol fuzzing framework BooFuzz. Taking
the message format description and the interesting value
collection as inputs, the tool automates the testing case gen-
eration, monitors the target’s status, and records suspicious
cases. [4] bases on BooFuzz and designs a fuzzing tool
Z-Fuzzer, which aims at fuzzing Zigbee protocol and uses
code coverage as feedback to guide the fuzzing process. [5]
manually extracts 22 cluster message formats and interesting
field values (e.g., attribute ID) from the specification and de-
velops BeeHive, which generates testing cases to enumerate
these messages and field values. [10] relies on the message
formats recorded in the open-source protocol library to
generate testing cases. All of them require significant human
efforts to construct and maintain the message formats, which
are labor-intensive and error-prone. [3], [44] proposes to use
phone apps and APIs that control the device through the
vendor platform to construct the message formats. However,
they mainly focus on inferring the platform-level message
format (e.g., Restful API messages), which only covers a
small fraction of the message formats of the underlying
protocol that is directly used by the device, e.g., Zigbee.
Compared with the work mentioned above, we propose
to utilize the LLM to address the main challenge of format-
aware IoT fuzzing. With only the specification document
as input, our method automatically constructs the message
format with high accuracy while avoiding significant hu-
man efforts. Besides the knowledge of message formats,
our method also extracts useful protocol information, e.g.,
interesting values and message dependencies, which benefits
the fuzzing process and is omitted by previous works. In
particular, our evaluation covers most Zigbee fuzzers [4],
[5], [42], and the evaluation result shows that our method
outperforms them in terms of code coverage and vulnera-
bility identification. Since some fuzzers [10] are not open-
source, we cannot evaluate their performance.
LLM-guided fuzzing. Impressed by the remarkable suc-
cess of the LLM in various natural language processing
tasks, researchers have been exploring the LLM’s potential
in diverse domains, including in fuzzing [6], [45], [46], [47],
[48]. Specifically, [45] proposes CODAMOSA which uses
LLMs to automatically generate testing cases for fuzzing
Python modules. [46] uses LLMs to generate testing cases
for fuzzing deep-learning software libraries. [48] proposes
Fuzz4 All which takes example codes as inputs and generates
slightly different code snippets as testing cases. Instead of
asking the LLM to directly generate testing cases, chat-
Fuzz [47] asks the LLM to modify human-written testing
cases for mutation purposes. The most related work to our
paper is chatAFL [6], which uses the LLM to fuzz network
protocols. By exploiting the LLM’s understanding of the
target protocol, chatAFL asks the LLM to construct mes-
sage formats and enrich seeds. All of the mentioned LLM-
guided fuzzers are built on the assumption that the LLM
has sufficient domain knowledge, e.g., Python grammar and
protocol details, such that they can be easily adapted to the
fuzzing task. Instead, our work initiates a case study for
Zigbee fuzzing to show that the assumption does not hold.
Moreover, we propose an LLM augmentation approach that

feeds the LLM with specification contents, and the evalua-
tion result shows that the augmented LLM can effectively
guide various fuzzing phases.

Augmented language model. LLMs by default possess
general knowledge across a wide range of topics. How-
ever, [24], [25] show that LLMs may not obtain enough
knowledge for specific domains. The reasons are various,
e.g., knowledge bias exists that more popular or widely-
discussed topics, e.g., python programming, maybe over-
represented, while very domain-specific topics, e.g., Zigbee
protocol, can usually be under-represented. As a result, a
series of works are proposed to augment the language model
with domain knowledge [31], [32], [49], [50], [51], [52].
Specifically, [31], [32], [49] employ a neural retriever to
acquire task-relevant information from a knowledge base,
e.g., Wikipedia, and fine-tune the language model. [50],
[51], [52], on the other hand, teach the LLMs to call domain
tools for answer generation, e.g., writing SQL to query
from the database. Our work follows the former paradigm,
i.e., retrieving domain knowledge and enhancing the LLM.
Different from previous works, we use document analysis
to retrieve domain knowledge instead of training neural
networks. Moreover, we use prompt engineering to feed the
LLM which gets rid of the fine-tuning cost.

8. Conclusion

Fuzzing the 10T protocol(e.g., Zigbee) faces critical chal-
lenges including obfuscated message formats, unresolved
message dependencies, and lack of testing case evalua-
tion. In this paper, we show that the protocol specification
contains fruitful message descriptions, which can be used
to address the limitations and guide the fuzzing process.
To automate specification analysis, we further augment the
large language model with the specification contents and
drive it to answer protocol-related questions. Finally, we
propose a fuzzing algorithm LLMIF, which incorporates the
augmented LLM into Zigbee fuzzing. The evaluation result
shows that guided by the LLM, our method increases the
message coverage by 55.2% and achieves a 53.9% boost in
code coverage. Moreover, LLMIF reveals 11 vulnerabilities
on real-world Zigbee devices(including eight zero-day vul-
nerabilities), while the baseline tools only discovered one
zero-day vulnerability.
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Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

The research work introduces a new IoT fuzzing ap-
proach that leverages protocol specifications to create more
effective test cases. By using a large language model to ana-
lyze specifications, the method improves code and message
coverage, leading to the discovery of zero-day vulnerabilities
in Zigbee implementations.

A.2. Scientific Contributions

« Provides a Valuable Step Forward in an Established
Field

o Creates a New Tool to Enable Future Science

« Identifies an Impactful Vulnerability

A.3. Reasons for Acceptance

1) LLMIF tackles various stages of fuzzing, leading
to more thorough testing and vulnerability discov-
ery. Compared to traditional approaches, LLMIF
achieves over 50% improvement in code and mes-
sage coverage, making it more likely to uncover
hidden bugs.

2) In real-world testing on Zigbee devices, LLMIF
successfully identified four zero-day vulnerabilities,
highlighting its effectiveness in uncovering critical
security issues.

3) The impressive results of LLMIF showcase its
potential as a powerful tool for securing Zigbee
devices. With its ability to achieve wider code cov-
erage and identify critical vulnerabilities, LLMIF
paves the way for more robust and secure Zigbee
implementations.

A.4. Noteworthy Concerns

1) The paper lacks discussion of LLMIF’s novelty
compared with chatAFL.

2) The paper lacks discussion of LLMIF’s generaliza-
tion for fuzzing other IoT protocols.

3) The paper misses evaluation setup details (e.g., used
LLM version) and evaluation results compared with
chatAFL.

Appendix B.
Response to the Meta-Review

We would like to express our great gratitude towards
the efforts made by the (meta) reviewers and shepherds.



We acknowledge the meta-review and have adhered to the
provided instructions. Subsequently, we have implemented
the following revisions to enhance our paper.

Clarify the novelty of LLMIF against chatAFL. We
added a new section (Section 6) to discuss the novelty
of LLMIF. In summary, We outline the novel aspects of
LLMIF in comparison to chatAFL as follows. (LLMIF)
Specification-augmented prompting v.s. (chatAFL) Simple
few-shot learning prompting. (LLMIF) Advanced fuzzing
algorithm which uses the LLM to cover four fuzzing phases
v.s. (chatAFL) Simple fuzzing algorithm which uses the
LLM to cover two fuzzing phases.

Clarify the generalization of LLMIF for fuzzing
other IoT protocols. We added a new section (Section 6)
to discuss the generality of LLMIF. In summary, we show
how to extend LLMIF for fuzzing other IoT protocols with
two steps.

o Users need to update the input protocol specification.
o Users need to replace the hardware radio.

The paper misses some evaluation results and setup
details. We have updated the corresponding section (Section
5.1) in our paper to add more details about the evaluation.
In summary: We updated Section 5.1 to introduce the details
of the LLM setup in our evaluation, including the used
LLM (chatGPT-3.5) and the parameter setting (temperature
= 0). We updated Section 5.2 to compare the code coverage
result between LLMIF and chatAFL. Specifically, compared
with chatAFL, LLMIF improves the message coverage, edge
coverage, and statement coverage by 82.1%, 67.4%, and
64.1%, respectively.



